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An algorithm for solving an inverse problem in steady state heat 
conduction is developed. In this problem, the location and shape of the 
inner boundary of a doubly connected domain is unknown. Instead, 
additional experimental data are provided at several points on the outer 
boundary. Through an iterative process, the unknown boundary is 
determined by minimizing a functional. Convergence properties of the 
algorithm are examined, and the stopping criterion for the iterative 
process is developed from numerical experiments in a simple case. The 
scheme is shown to perform well for the complex case of an L-shaped 
crack in a square domain. 0 1332 Academic Press. Inc 

1. INTRODUCTION 

In a direct problem, all the information necessary for the 
solution of the problem are given as boundary conditions. 
In inverse problems, sufficient boundary conditions are not 
provided. In some problems, additional information at 
some interior points may be known, and the conditions on 
the boundary are unknown. For other problems, the condi- 
tions on some portions of the boundary of the domain are 
over-specified while the shape of or condition on some other 
portions of the boundary is unknown. In this paper, a 
problem of the latter kind is examined. Such problems 
naturally occur in non-destructive testing where the shape 
of a flaw in the interior is determined by utilizing 
measurements on the boundary. 

Consider the problem of steady state heat conduction in 
a two-dimensional domain D shown in Fig. 1. Some parts 
(Sl,) of the boundary of the domain are insulated, and the 
rest (S Id) is exposed to a steady temperature distribution. 
The temperature in this steady heat conduction problem 
satisfies the Laplace equation. Also consider that the 
temperature at Sl, is obtained experimentally at several 
selected points. If the domain is punctured or contains a 
flaw (S2) as shown in Fig. 2, the measured temperature will 
be different from that for an unpunctured clean domain. 
Conversely, this difference in temperature indicates the 
presence of the flaw. Further, one can use the specified 
temperature and flux conditions on Sl n + Sl,, and the 
additional experimental information, and attempt to deter- 
mine the location and shape of the flaw. The uniqueness of 
the solution to the problem of this nature has been discussed 
by Ramm [7]. 

In a recent review, Tanaka [lo] has outlined several 
algorithms that have been employed in the solution of 
various kinds of inverse problems involving potential fields, 
elastostatic fields, and scalar wave fields. Murai and 
Kagawa [6] employed the influence coefficient approach 
in which the influence coefficient matrix is obtained by 
calculating the effect of shifting one node on all other nodes. 
In an iterative process, the nodes on the guessed boundary 
are shifted until the desired effect on a known boundary is 
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FIG. 1. Domain without flaw. FIG. 2. Domain with a real flaw. 
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achieved. Yoshikawa et al. [ 111 obtained the solidification in the numerical calculation. Yet it will affect the experimen- 
line in a blast furnace by minimizing a functional which is tal recordings. As a result, the two values, numerical and 
formed by squaring and adding the difference between experimental, of the temperature would not match. This 
experimental and computed temperatures. However, the matching procedure can thus be used as a test for 
iterative method converges only when it is coupled with a establishing the existence of flaws. Such a procedure will 
regression analysis. Tanaka and Masuda [9] used a Taylor be applicable in the laboratory only when the actual distur- 
series expansion of the boundary integral equation to bances caused by the flaw are not masked by the errors in 
obtain the unknown boundary by distorting a guessed computation and measurements. If the numerical and 
boundary in an iterative process. This method requires experimental temperature values match, then there is no 
additional care in evaluating singular integrals which flaw. In the present work we have assumed that there could 
appear due to the differentiations in the Taylor expansion. only be one flaw in the domain D. 

In the present paper, an algorithm is presented in which 
a functional, which is substantially different from that used 
by Yoshikawa et al. [ 111, is minimized in an iterative 
process to arrive at the unknown boundary by distorting 
a guessed boundary. The method converges without any 
difficulty, and the procedure does not involve evaluation 
of singular integrals. The algorithm is employed in solving 
three example problems. For one of the examples, the 
convergence pattern and its dependence on the number 
of experimental data points are demonstrated and the 
relationship between the minimum value of the functional 
and the accuracy of the solution is examined. 

The present work is similar to some recent research on 

Once it is clear from the test that the flaw exists, the 
domain of the problem changes from a simply connected to 
a doubly connected one with S2 (Fig. 2) the flaw, as its 
inner boundary. Although the location and the geometry of 
the flaw are unknown, the boundary condition on S2 is 
known to be the homogeneous Neumann condition. This 
corresponds to the physical situation of a flaw with very 
small conductivity. Our aim is to determine S2 from the 
measured temperature data on S 1 n. The scheme for solving 
this inverse problem is described in the following section. 

3. THE TECHNIQUE 

The differential equation which governs steady state heat 
conduction is 

V2T=0, in D, (1) 

optimal shape design. In such design problems, a functional 
is minimized in order to arrive at the optimum geometry. 
Mota Soares et al. [4] and Mota Soares and Choi [S] 
have used the boundary integral equations in conjunction 
with non-linear programming technique to determine the 
optimal shape of a shaft. In these works, the set of nodal 

and the boundary conditions are 

coordinates on the required geometry were treated as the 
degrees of freedom. T(q) = To(q), qEsl,, 

In the present work, the emphasis is on the algorithm 
rather than the use of such technique in a practical situation. 
Further work on the applicability is anticipated. 

aT(q) = o 
I *n, 3 qEs2, 

2. THE PROBLEM 

Consider the problem of steady state heat conduction 
through a two dimensional domain D whose outer 
boundary is S 1 (Fig. 1). Certain temperature distribution is 
maintained on a portion of the outer boundary (S 1 d), and 
the rest of the boundary (S 1.) is insulated. 

where nq is the outward normal drawn at q. The differential 
equation can be converted into the boundary integral 
equation [ 11, 

vTcp)=L fSI +s2 
(G’T(q) - GT’(q)) ds, (3) 

d n 
The temperature distribution on the insulated boundary, 

Sl,, can be obtained numerically by solving the boundary 
value problem for the Laplace equation, and also 
experimentally by attaching temperature recording probes 
to the insulated boundary. Ideally, the experimentally 
recorded and the numerically obtained values should match 
within certain acceptable limits. But, this may not.always 
happen. There could be a flaw at an unknown location, and 
of unknown shape and size inside the domain D. Being 
unaware of the existence of the flaw, it will not be included 

which connects the temperature at any point p with the 
boundary data. The (‘) denotes the derivative a/an, and the 
points p and q are known as the source and the field points, 
respectively. The coefficient q is given as 

v =o, if pliesoutsideD+Sl,+Sl,+S2 

= 2rc, if p lies inside the domain D (4) 

= a, if pliesonSl,+Sl,+S2, 
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where a is the included angle between two adjacent tangents 
at p. The function G is the fundamental solution of Laplace 
equation in two dimensions, and is known to be In Ip - 41. 
Inserting the boundary conditions from Eq. 
simpiifies to 

(2), Eq. (3) 

+ 1 G’T(q) dS + J G’T(q) dS. (5) 
s I” s2 

The first step of the scheme is to assume a flaw boundary 
S3 (Fig. 3). Ignoring the real flaw for the time being, 
the boundary integral equation, for the domain bounded 
externally by S 1 d + S 1 n and internally by S3, is 

VT(P) = j (G’Tdq) - GT’(q)) a 
Sld 

+ 1 G’T(q) dS+ j G’T(q) dS, (6) 
Sl” s3 

in which the following boundary conditions have been 
applied: 

aT(q) =O - > an, qes1, 

"d 

VT,(P) - 1 G/T,(q) ds 
Sl” 

j 
I (G’Totq) - W(q)) dS 
s I</ 

+ s G’TJq) dS 
s2 

Wq) =O 
- 2 

8% 
qES3. 

We now plan to develop an algorithm which would 
distort the assumed flaw S3 until S2 = S3. However, at the 
beginning of the procedure, S2 # S3, and the temperature 
( T) and the flux (T’) values appearing in Eq. (5) and Eq. (6) 
are different. Hence, for clarity, we add a subscript 2 to T 
and T’ when the inner boundary is S2, and use subscript 3 
when the inner boundary is S3, and rewrite equations (5) 
and (6) as 

FlG. 3. Domain with the guessed flaw 

VT,(P)-j G'T,tq)dS 
Sl" 

(8) 

(10) 
(7) 

z 

I 
(G’Totq) - GG(q)) ds 

Sld 

+ j G’T,(q) dS. (9) 
s3 

If one substitutes S2=S3, T,(q)= T,(q), and T;(q)= 
T;(q) in all the terms on the right-hand side of Eq. (8), 
this equation will not be satisfied any more. Denoting the 
error in Eq. (8) after such a substitution by 6, we can write 

yT,(p) - j G’T,(q) dS 
Sl” 

zz 
s (G’Totq) - GT;(q)) dS 
Sld 

s G'T,(~)~S+~(P). 
s3 

Now subtracting Eq. (9) from (10) we obtain 

~(T,(P)- T,(p))+j (G'T,(q))dS 
s I, 

- 

s 
(G'T,(~))~S=@P). (11) 

Sl" 

The temperature T,(p) is assumed to be known from 
experiments for the real flaw at N number of selected points, 
pi, p2, . . . . pN on S 1 n. Equation (11) for one such selected 
point p, is 

rl(T2(~,)- T,(p,))+j (G'T,(q))dS 
S1. 

4 tG’T,tq)) dS= &PA = 6,. (12) Sl, 

Now, each term of Eq. (12) will be examined: 

Term 1. T2(pn) is obtained from experiments; and 
T,(p,) is obtained from numerical solution and can be 
updated as the minimization proceeds. 
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Term 2. Temperature T,(q) at Sl n can be obtained 
numerically for the guessed flaw boundary S3 and updated 
as the minimization proceeds. 

Term 3. The experimentally measured data, T,(p,), on 
the boundary S 1 n is interpolated to obtain rZ( q). 

Altogether, one can evaluate N quantities [S,, 
n = 1) 2, 3, . ..) N] for the N number of selected points 
P= Ply P2, ...> pN. Then one can form the functional 

N 
F= c ii;: 

12 = 1 

and minimize it. During the minimization process, the 
quantities S3 and T,(q) are modified, and at the conclusion 
of the process S3 converges to S2. The formulation of the 
problem as a minimization procedure has enabled us to use 
a commercially available package for the solution. The 
details of the algorithm for updating the unknowns at the 
end of each cycle is presented in the following section. 

4. THE ITERATIVE PROCESS 

In all the problems considered here, the outer boundary 
is a square which is divided into eight elements. On each 
element, the temperature and flux are assumed to be linear. 

The real unknown flaw, S2, could be of any general 
shape. A very precise description of an odd-shaped flaw by 
using only straight elements, which we plan to use for sim- 
plicity, will require very fine discretization. The coordinates 
of the end points of such elements will then be the ultimate 
unknowns in the problem. For each additional element, the 
size of the problem is increased by two unknowns which are 
the coordinates of one end point of the added element. 
Soon, the procedure becomes computationally lengthy and 
economically unsound. As a remedy, in the present scheme, 
all flaws are assumed to be elliptic. 

There are two reasons behind such an assumption. First, 
in nondestructive evaluation, the location of the flaw and an 
estimate of the linear dimensions of the flaw is usually ade- 
quate. The precise shape of the flaw is not required. Second, 
it has been found by the authors and other researchers 
[4, 51 that the nodal coordinates are not the suitable 
variables. Mota Soares and Choi [S] have observed that 
when the nodal variables are used, too much freedom 
is given to the problem which gives rise to kinks on the 
boundary S2. Authors’ preliminary calculations support 
this observation. During the iterative refinement of S2, 
the nodal coordinates can move in such a fashion that 
the boundary S2 wraps around itself and finally lead to 
unrealistic solution. In order to avoid such unrealistic 
solutions, Saigal and Kane [S], while studying a shape 
optimization system for aircraft components, restricted the 
movement of the nodal points by retaining them on 
B-splines. 

The assumption that all flaws are elliptic reduces the 
degree of freedom, and thereby reduces the computation 
time. The possibility of unrealistic solutions is also avoided 
by restraining the movement of the nodal points. Further, 
the elliptic shape covers a wide range of shapes from circular 
holes to straight cracks. In addition, the assumption 
regarding elliptic flaws is found to work well for a flaw 
which is very much different from an ellipse (see 
Example 3). The algorithm yields excellent estimates for the 
location, area, and linear dimensions of the flaw. 

The ellipse is discretized by eight elements. Instead of con- 
sidering the coordinates of the end points of these elements 
as the unknowns (degrees of freedom = 16) the semi-major 
axis (a), the semi-minor axis (b), location of the center 
(x,., y,), and the angular orientation (4) of the major axis 
with a fixed global direction are considered as the ultimate 
unknowns of the problem (degrees of freedom = 5). Ideally 
one must obtain T,(p,) from experiments, however, for 
want of any experimental data, a Laplace solver, based on 
boundary integral equation method, was used to compute 
T,(p,). This Laplace solver is also used in conjunction with 
the minimization routine in the following calculations. 

At the beginning of the iteration process, an initial guess 
for S3 is chosen, and for this guessed flaw, the T,(q) is 
calculated by using the Laplace solver. A subroutine named 
as FCN then calculates the functional using the description 
of S3 (as given by the 5 degrees of freedom), T,(q), and 
T,(p,). For the minimization, the IMSL subroutine called 
UNLSF has been used. This subroutine uses the functional 
calculated by FCN, and updates the 5 degrees of freedom 
that define S3. The subroutine UNLSF is based on the 
Levenberg-Marquardt [2,3] algorithm. The routine 
UNLSF calculates the derivatives of the functional inter- 
nally, and the user need not furnish expressions for these. 
The updated S3 is then used by the Laplace solver to update 
T,(q). The functional is then calculated by FCN, and the 
process continues till convergence. During each cycle of the 
iterative minimization process, the Laplace solver updates 
T,(q), and UNLSF updates S3. This division of duties is 
computationally more efficient. If one forces UNLSF to 
update all the unknowns, e.g., S3 and T,(q), then it would 
have to deal with too many variables and would slow down 
the convergence significantly. Further, solution for too 
many variables would require a large value of N and would 
entail an unreasonable experimental effort to obtain T2( p,,) 
at too many points. Although the method, outlined above, 
involves repeated solution of discretized integral equations, 
the computational cost is acceptable since the convergence 
is fast. 

5. EXAMPLES 

In this section the results for three example problems are 
presented. Through these examples, the convergence 
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FIG. 4. Geometry of Example 1. 
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properties of the scheme, and its performance for a non- 
elliptic flaw will be demonstrated. In all the examples, the 
outer boundary is a 2 x 2 square. The origin of the Cartesian 
axis system is located at the center of the square, with x-axis 
horizontal, and y-axis vertical. The vertical sides of the 
square are held at temperatures of 400 and 50”. The other 
two sides are insulated. Computations in all the cases begin 
with a guessed flaw in the shape of a circle of radius 0.1 
which is located symmetrically at the center of the domain. 

5.1. EXAMPLE 1. In this example the actual flaw is 
elliptic, with a = 0.05, b = 0.025, x,. = y, = 0, and 4 = 0. The 
geometry of the problem is shown in Fig. 4. The problem is 
solved for N = 8, 10, and 12. Recalling that N is the number 
of probes used for the experimental measurements, half of 
these probes are placed on the top and half on the bottom 
surface of the square domain. The performance of the algo- 
rithm for these values of N is shown in Table I. For all 
values of N, the minimization process was continued until 
the value of the functional reduces to the order of 3 x 10-19. 
The relative errors in semi-major and semi-minor axes at 
the “convergence” (which corresponds to F= O( lo- 19) for 
the present discussion) are shown in columns 4 and 5 of 
Table I. The data show that the number of iterations is 

TABLE I 

N Functional I Percent error in a Percent error in 6 

8 2.623 E-19 81 0.1 0.04 
10 2.623 E-19 83 0.1 0.04 
12 2.623 E-19 83 0.1 0.04 

Note. I= number of iterations; N= number of probes on the 
boundary. 

FIG. 5. Relationship between the value of the functional and the error 
in the value of the semi-major axis. 

independent of the number of probes. Further, N has no 
influence on the accuracy of the solution. However, one 
should not choose N < 5, because that would lead to an 
underdetermined problem, and the results are found to be 
markedly inferior. Next we would examine, how far one 
should continue the minimization process. We begin with 
the notion that the relative errors in each of the five 
unknowns at any stage of iteration depends on the value of 
the functional at that stage. The relationship between the 
value of the functional and the percent error in the value of 
semi-major axis of the ellipse is shown in Fig. 5. This 
diagram shows that at the initial stages, the value of the 
semi-major axis improves very slowly. In the intermediate 
stage, the convergence is rapid, and in the final stage, any 
further reduction in the value of the functional causes 
insignificant improvement in accuracy. However, Fig. 5 
shows that the value lo-i2 of the functional corresponds to 

10-16 

0 
I I I 

) \ 

20 40 60 80 101 
No. of Iterations 

FIG. 6. Variation of the value of the functional with the number of 
iterations. 
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FIG. 7. Predicted flaw at different stages of iteration for Example 2. 

roughly 1% error, and for the following examples the itera- 
tion was stopped when the minimization reaches this stage. 
In Fig. 6, the number of iterations necessary for attaining 
different levels of accuracy is shown. 

5.2. EXAMPLE 2. In this example, the flaw is still elliptic 
but is now located off-center. The variables defining the flaw 
are a = 0.05, b = 0.025, x, = y, = 0.2, qS = 45”. In Fig. 7, the 
dynamics of the iterative process is simulated by showing 
the shape of the octagon (discretized ellipse) at various 
stages of iteration. This diagram shows that after 21 itera- 
tions the predicted flaw closely resembles the actual flaw. 
However, the computer program arrives exactly at the real 
flaw only after 80 iterations. The value of N was chosen to 
be 8, and the execution was stopped when the value of the 
functional reached lo- I’. 

FIG. 8. Geometry of Example 3. 

-ACTUAL S2 

-CONVERGED 
SOLUTION 
FOR 52 

(0.332, 
(0.2.0.5) i 0.494) (0.5.0.5) 

(0.15, 
0.45) 

FIG. 9. Blow up of predicted and actual flaws of Example 3. 

5.3. EXAMPLE 3. In order to demonstrate the superior 
performance of the scheme for non-elliptic flaws, it was 
employed-in detecting an L-shaped crack shown schemati- 
cally in Fig. 8 which is not drawn to scale. The crack width 
is 0.1 and the length of the arms is 0.3. Once again, the num- 
ber of probes used was 8. The coordinates of the corners of 
the crack and converged octagon are shown as a blow up in 
Fig. 9. The algorithm identifies the location of the crack very 
well and provides an excellent estimate of the linear dimen- 
sions of the crack. The area of the crack is 0.055, and the 
area of the octagon is 0.06. The centroid of the crack is 
located at (0.383, 0.383) and the centroid of the octagon at 
(0.383, 0.342). The number of iterations required for this 
solution is 29. The value of the functional at convergence is 
of the order of 10P9. This is understandable since the elliptic 
shape cannot exactly model an L-shaped flaw. 

6. DISCUSSION 

The performance of the simple algorithm based on the 
minimization of a functional was found to be excellent in 
several test cases. In this algorithm, the flaw is assumed to 
be an ellipse which is uniquely defined by five quantities. 
This assumption would enable one to extend the method to 
three dimensions, where the number of variables will be 
nine. Numerical experimentation for a simple case provided 
good guidelines for fixing the number of experimental data 
points and established the criterion for stopping the 
iterative process. Employment of these guidelines produced 
an excellent solution for a non-elliptic flaw. The algorithm 
developed here for the temperature field could presumably 
to extended to elastostatics, scattering, and electromagnetic 
fields. 
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An attempt has been made to evaluate the applicability of 
this method for real experimental data which may have 
measurement errors. Although the observations are incon- 
clusive, the algorithm does not tolerate experimental errors 
which mask the effect of the flaw. For practical application, 
this deficiency should be eliminated. Research in that 
direction is currently in progress, and the results will be 
reported elsewhere. 
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